QUESTION BANK 2021-2022

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY :: PUTTUR Siddharth Nagar, Narayanavanam Road – 517583

OUESTION BANK (DESCRIPTIVE)

Subject with Code : Design of Machine Elements-II (19ME0318)

Year & Sem: III-B.Tech & II SEM

Regulation: R19

Course & Branch: B.Tech - ME

<u>UNIT I</u>

DESIGN OF CURVED BEAMS & POWER TRANSMISSION SYSTEMS

QUESTION BANK 2021-2022

7. T du et pu Pe m o m E	If steel with a shear stress of 40 Mpa. Two shafts whose centres are 1 metre apart are connected by a V-belt brive. The driving pulley is supplied with 95 Kw power and has an an effective diameter of 300 mm. It runs at 1000 r.p.m. while the driven pulley runs at 375 r.p.m. The angle of groove on the pulleys is 40°. Permissible tension in 400 mm ² cross-sectional area belt is 2.1 Mpa. The naterial of the belt has density of 1100 kg / m ³ . The driven pulley is everhung, the distance of the centre from the nearest bearing being 200 nm. The coefficient of friction between belt and pulley rim is 0.28. Estimate: 1. The number of belts required ; and 2. Diameter of driven	L5	CO1	12M
7. T di et pr P m o m E	Two shafts whose centres are 1 metre apart are connected by a V-belt drive. The driving pulley is supplied with 95 Kw power and has an effective diameter of 300 mm. It runs at 1000 r.p.m. while the driven pulley runs at 375 r.p.m. The angle of groove on the pulleys is 40°. Permissible tension in 400 mm ² cross-sectional area belt is 2.1 Mpa. The material of the belt has density of 1100 kg / m ³ . The driven pulley is overhung, the distance of the centre from the nearest bearing being 200 mm. The coefficient of friction between belt and pulley rim is 0.28. Estimate: 1. The number of belts required ; and 2. Diameter of driven	L5	CO1	12M
di et pr Pr m o' m E	The driving pulley is supplied with 95 Kw power and has an affective diameter of 300 mm. It runs at 1000 r.p.m. while the driven pulley runs at 375 r.p.m. The angle of groove on the pulleys is 40°. Permissible tension in 400 mm ² cross-sectional area belt is 2.1 Mpa. The naterial of the belt has density of 1100 kg / m ³ . The driven pulley is overhung, the distance of the centre from the nearest bearing being 200 mm. The coefficient of friction between belt and pulley rim is 0.28. Estimate: 1. The number of belts required ; and 2. Diameter of driven			
et pr Pr m ov m E	ffective diameter of 300 mm. It runs at 1000 r.p.m. while the driven pulley runs at 375 r.p.m. The angle of groove on the pulleys is 40°. Permissible tension in 400 mm ² cross-sectional area belt is 2.1 Mpa. The naterial of the belt has density of 1100 kg / m ³ . The driven pulley is overhung, the distance of the centre from the nearest bearing being 200 nm. The coefficient of friction between belt and pulley rim is 0.28. Estimate: 1. The number of belts required ; and 2. Diameter of driven			
p P m o m E	pulley runs at 375 r.p.m. The angle of groove on the pulleys is 40° . Permissible tension in 400 mm ² cross-sectional area belt is 2.1 Mpa. The material of the belt has density of 1100 kg / m ³ . The driven pulley is overhung, the distance of the centre from the nearest bearing being 200 mm. The coefficient of friction between belt and pulley rim is 0.28. Estimate: 1. The number of belts required ; and 2. Diameter of driven			
P m o' m E	Permissible tension in 400 mm ² cross-sectional area belt is 2.1 Mpa. The naterial of the belt has density of 1100 kg / m ³ . The driven pulley is overhung, the distance of the centre from the nearest bearing being 200 nm. The coefficient of friction between belt and pulley rim is 0.28. Estimate: 1. The number of belts required ; and 2. Diameter of driven			
m E	naterial of the belt has density of $1100 \text{ kg} / \text{m}^3$. The driven pulley is overhung, the distance of the centre from the nearest bearing being 200 nm. The coefficient of friction between belt and pulley rim is 0.28. Estimate: 1. The number of belts required ; and 2. Diameter of driven			
o' m E	overhung, the distance of the centre from the nearest bearing being 200 nm. The coefficient of friction between belt and pulley rim is 0.28. Estimate: 1. The number of belts required ; and 2. Diameter of driven			
m E	nm. The coefficient of friction between belt and pulley rim is 0.28. Estimate: 1. The number of belts required ; and 2. Diameter of driven			
E	Estimate: 1. The number of belts required ; and 2. Diameter of driven			
ומ				
11	oulley shaft, if permissible shear stress is 42 Mpa.			
8. A	A belt drive consists of two V-belts in parallel, on grooved pulleys of the	L5	CO1	12M
Sa	ame size. The angle of the groove is 30°. The cross-sectional area of each			
b	welt is 750 mm ² and $\mu = 0.12$. The density of the belt material is 1.2 Mg /			
m	n ³ and the maximum safe stress in the material is 7 Mpa. Calculate the			
p	ower that can be transmitted between pulleys of 300 mm diameter			
rc	otating at 1500 r.p.m. Find also the shaft speed in r.p.m. at which the			
p	ower transmitted would be a maximum.			
9. A	An open belt connects two flat pulleys. Pulley diameters are 300 mm and	L4	CO1	12M
4.	50mm and the corresponding angles of cap are 160° and 210° . the			
SI	maller pulley runs at 200 rpm, μ =0.25. it is found that the belt is on the			
p	point of slipping when 3kw is transmitted. To increase the power			
tr	ransmitted two alternatives are suggested., namely (i) increase the initial			
te	ension by 10% and (ii) increasing μ by 10% by the application of a			
sı	uitable dressing to the belt. Which of these two methods would be more			
ef	ffective ? find the percentage increase in power possible in each case.			
10. D	Design a horizontal belt drive for a centrifugal blower, the belt driven at	L6	CO1	12M
6	00rpm by a 15kw, 1750rpm electric motor. The centre distance is twice			
tŀ	he diameter of the larger pulley. The density of the belt			
m	naterial=1500kg/m ³ maximum allowable stress =4MPa. μ_1 =0.5 (motor			
p	oulley), $\mu_2=0.4$ (blower pulley); peripheral velocity of the belt=20m/s.			
D	Determine the following:			
	i. Pulley diameters			

	QUESTION BANK	202	1-2022	2
	ii. Belt length			
	iii. Cross sectional area of the belt			
	iv. Minimum initial tension for operation without slip			
L				
	<u>UNIT II</u>			
	Design of sliding contact & rolling contact Bearings			
1.	Design a journal bearing for a centrifugal pump with the following	L6	CO2	12M
	data.			
	Diameter of journal =150mm			
	Load on bearing =40kN			
	Speed of journal =900 RPM			
2.	Design a journal bearing for centrifugal pump from the following	L5	CO2	12M
	data:			
	Load on the journal = 20 kN			
	Speed of the journal = 900 rpm			
	Type of oil SAE 10 for which absolute viscosity at $55^{\circ}C = 17$			
	centipoises			
	Ambient temperature of $oil = 15.5$ °C			
	Maximum bearing pressure for the pump = 1.5 N/mm2			
	Calculate also the mass of the lubricating oil required for artificial			
	cooling to rise in temperature of the oil limited to 10°C. Heat			
	dissipation coefficient = $12.2 \text{ kN/m}^2/^\circ\text{C}$			
3.	A full journal bearing of 50 mm diameter and 100 mm long has a	L6	CO2	12M
	bearing pressure of 1.4 N/mm ² . The speed of the journal is 900 rpm			
	and the ratio of journal diameter to the diametral clearance is 1000.			
	The bearing is lubricated with oil whose absolute viscosity at the			
	operating temperature of 75°C may be taken as 0.011 kg/m-s. The			
	room temperature is 35°C. Find: (i) The amount of artificial cooling			
	required. (ii) The mass of the lubricating oil required, if the difference			
	between the outlet and inlet temperature of the oil is 10°C. Take			
	specific heat of the oil as 1850 J/kg/°C.			
4.	Following data is given for 360 ⁰ hydrodynamic bearings: journal	L5	CO2	12M

					Q	UESTI	ON B	ANK	202	1-2022	2
	diamete =50kN viscosi (ii) coe	er =100 m ,bearing leng ty of lubrican efficient of fric	m, radial th = 100 for $t = 16$ CP. (retribute the second se	clearance mm, journ Calculate (i) power lo	=0.12m al speed i) minimu st in fricti	nm, ra =144 1m film on.	ndial Orpm n thic	load and kness			
5.	Design Absolu	a journal bear Load on the j Diameter of t Speed=1440 Atmosphere t Operating ter ite viscosity of	ring for cen ournal = 12 he journal = rpm cemperature nperature=6 f oil at 60°C	trifugal pur kN =75mm = =16 ⁰ C 50 ⁰ C C = 23 centi	mp for the	e follov	ving o	lata:	L6	CO2	12M
6.	A 70m continu and spe bearing S.No 1 2 3	m machine s iously for 8hr eed cycle for g. Fraction of cycle 0.25 0.25 0.5	haft is to b s per day,32 one of the Radial load,N 3500 3000 4000	20 days per 20 days per bearings a Thrust load,N 1000 2000	ed at the year for re given Speed, rpm 600 800 900	ends. 8 years below. X 0.56 0.56	It op s. The Select Y 1.2 1.2 1.4	 e load ct the Z 1.5 1.5 1.5 	L6	CO2	12M
7.	Select support require (i) The (ii) The surviva	a suitable spl t a radial load d is 10000 hrs expected life e equivalent 1 ll of 95% with	herical rolle d of 4kN a at 1000 rp under the g oad that ca 10000 hou	er bearing nd axial lo m. For this iven loads in be supports.	from SK ad of 2k select bea	F serie N. Mir aring fi	s 222 nimur nd babil	2C to n life ity of	L6	CO2	12M
8.	The rac acting the tim to 10kl for a li	dial load on a 20% of time a e at 600 rpm. N linearly at 7 fe of at least	roller bearin at 500 rpm In the rema 00 rpm. Se 4000 hours	ng varies as and a load aining time lect a roller . The opera	s follows a of 40kN the load bearing t ating temp	a load o is acti varies : from N peraturo	of 50 ng 50 from U22 e is 1	kN is)% of 40kN series 75 ⁰ C.	L5	CO2	12M

QUESTION BANK 2021-2022 The ball bearing for the drilling machine spindle is rotating at 9. L6 CO2 12M 3000rpm. It is subjected to radial load of 2500N and an axial load of 1500N. It is to work 50 hours per week for one year. Design a suitable bearing if the diameter of the spindle is 40mm. 10. The ball bearing for the drilling machine spindle of 40mm diameter CO2 12M L6 is rotating at 3000rpm. It is subjected to radial load of 2000N and an axial load of 750N. It is to work 45 hours per week for one year. Select and specify a suitable ball bearing.

<u>UNIT III</u> DESIGN OF IC ENGINES PARTS

1.	The following data is given for the piston of a four stroke diesel engine:	L5	CO3	12M
	Cylinder bore = 250 mm			
	Material of piston rings = Gray cast iron			
	Allowable tensile stress=100N/mm ²			
	Allowable radial pressure on cylinder wall = 0.03 MPa			
	Thickness of piston head = 42 mm and No of piston rings = 4			
	Calculate: (i) Radial with of piston rings. (ii) Axial thickness of piston			
	rings. (iii) Gap between the ends of piston rings before and after			
	assembly. (iv) Width of the top land. (v) Width of the ring grooves. (vi)			
	Thickness of the piston barrel and thickness of the barrel open end.			
2.	Design a cast iron piston for a single acting four stroke engine for the	L6	CO3	12M
	following data:			
	Cylinder bore = 100 mm			
	Stroke = 125 mm			
	Maximum gas pressure = 5 N/mm^2			
	Indicated mean effective pressure = 0.75 N/mm			
	Mechanical efficiency $= 80\%$			
	Fuel consumption = 0.15 kg per brake power per hour			
	Higher calorific value of fuel = $42 \times 10^3 \text{ kJ/kg}$			
	Speed = 2000 rpm			
	Tensile stress for cast iron (σ_t) = 38 MPa. Any other data required for the			
	design may be assumed.			
3.	(a) Enumerate the qualities of good cylinder liners.	L2	CO3	6M

	QUESTION BANK	202	1-2022	2
	(b) What is the function of piston? Explain piston troubles.	L1	CO3	6M
4.	(a) Explain about cylinder liners. What are the advantages of dry liners?	L2	CO3	4M
	(b)A four stroke diesel engine has the following specifications: Brake	L5	CO3	8M
	power = 6 kW, speed = 1000 rpm, indicated mean effective pressure =			
	0.45 N/mm ² , mechanical efficiency = 85%. Determine: (i) Bore and			
	length of the cylinder. (ii) Thickness of cylinder head. (iii) Size of studs			
	for the cylinder head.			
5.	Design a trunk type CI piston for an IC engine having a diameter of	L6	CO3	12M
	100mm and length of 150mm. the max pressure is 3.5MPa. Maximum			
	permissible tension for CI for the design and head thickness is 30MPa and			
	for the piston ring material 45MPa, bearing pressure for the piston pin			
	should not exceed 200MPa.			
6.	A connecting rod for a high speed IC engine uses following data:	L5	CO3	12M
	Cylinder bore = 125 mm			
	Length of $CR = 300 \text{ mm}$			
	Maximum gas pressure = 3.5 MPa			
	Length of stroke = 125 mm			
	Mass of the reciprocating parts $= 1.6 \text{ kg}$			
	Engine speed = 2200 rpm			
	Calculate: (i) Size of cross section of the connection rod.			
	(ii) Sizes of the big and small end bearings.			
7.	(a)Explain why torsional vibrations are dangerous.	L2	CO3	6M
	(b)Explain reasons for the failure of a crank shaft.	L2	CO3	6M
8.	Design a I-section of a connecting rod for an I.C engine using the	L6	CO3	12M
	following data:			
	Piston diameter = 125 mm			
	Stroke = 150 mm			
	Length of connecting $rod = 300 mm$			
	Gas pressure = 5 N/mm^2			
	Speed of engine = 1200 rpm			
	Factor of safety = 5 and material is steel 35 NiCr60.			
		-		

	QUESTION BANK	202	1-2022	2
9.	Design overhung crank shaft for a 0.25 m \times 0.4 m horizontal gas engine,	L6	CO3	12M
	explosion pressure2.38 MPa, weight of flywheel 16 kN, total belt pull 3			
	kN. When the crank is at 300, the torque on the crank shaft is maximum			
	and the gas pressure at this position is 1.015 MPa. Length of the			
	connecting rod is 0.95 m.			
10.	Design a connecting rod for an IC engine running at 1800rpm and	L6	CO3	12M
	developing a maximum pressure of 3.15 N/mm ² the diameter of piston is			
	100mm, mass of the reciprocating parts per cylinder is 2.25kg, length of			
	connecting rod is 380mm, stroke of piston is 190mm and compression			
	ratio 6:1. Take a factor of safety of 6 for the design. Take length to			
	diameter ratio for big end bearing as 1.3 and small end bearing as 2,			
	corresponding bearing pressure as 10N/mm ² and 15 N/mm ² . The density			
	of the material rod may be taken as 8000kg/m ³ and the allowable stress in			
	the bolts as 60 N/mm ² and in cap as 80 N/mm ² . The rod is to be of I-			
	section for which you can choose your own proportions.			
	Draw a neat sketch. Use Rankin's formulae for which the			
	numerator constant may be taken as 320 N/mm ² and denominator			
	constant as 1/7500.			

<u>UNIT IV</u> <u>DESIGN OF MECHANICAL SPRINGS</u>

		r			
1.	A compression spring made of alloy steel of coil diameter 75 mm and	L5	CO4	12M	
	spring index 6.0, number of active coil 20 is subjected to a load of 1.2 kN.				
	Calculate: (i) The maximum stress developed in the coil. (ii) The				
	deflection produced. (iii) The spring rate.				
2.	It is required to design a helical compression spring with plain ends, made	L5	CO4	12M	
	of cold drawn plain carbon steel, for carrying a maximum pure static force				
	of 1000 N. The ultimate tensile strength and modulus of rigidity for spring				
	material are 1430 N/mm^2 and 85 N/mm^2 respectively. The spring rate is				
	48 N/mm. If spring index is 5, determine: (i) Wire diameter. (ii) Total				
	number of coils. (iii) Free length and (iv) Pitch. Draw a neat sketch of				
	spring with necessary dimensions.				
3.	Design a valve spring for an automobile engine when engine valve is	L6	CO4	12M	
	closed, the spring produces a force of 44 N and when valve open,				
DESIGN	DESIGN OF MACHINE MEMBERS-II				

	QUESTION BANK	202	1-2022	2
	produces a force of 54 N. The spring must fit over the valve bush which			
	has an outside diameter of 20 mm and must go inside a space of 35 mm.			
	The lift of the valve is 6 mm. The spring index is 12. The allowable stress			
	may be taken as 325 N/mm ² . Modulus of rigidity may be assumed as 80 \times			
	10^3 N/mm^2 .			
4.	A semi-elliptical laminated vehicle spring to carry a load of 6000 N is to	L5	CO4	12M
	consist of seven leaves 65 mm wide, two of the leaves extending the full			
	length of the spring. The spring is to be 1.1 m in length and attached to the			
	axle by two U-bolts 80 mm apart. The bolts hold the central portion of the			
	spring so rigidly that they may be considered equivalent to a band having			
	a width equal to the distance between the bolts. Assume a design stress for			
	spring material as 350 MPa. Determine: (i) Thickness of leaves. (ii)			
	Deflection of spring. (iii) Diameter of eye. (iv) Length of leaves. (v)			
	Radius to which leaves should be initially bent.			
5.	(a) Explain what you understand by A.M. Wahl's factor and state its	L2	CO4	4M
	importance in the design of helical springs.			
	(b) A mechanism used in printing machinery consists of a tension spring	L5	CO4	8M
	assembled with a preload of 30 N. The wire diameter of spring is 2 mm			
	with a spring index of 6. The spring has 18 active coils. The spring wire is			
	hard drawn and oil tempered having following material properties: Design			
	shear stress = 680 MPa, Modulus of rigidity = 80 kN/mm ² . Determine: (i)			
	The initial torsional shear stress in the wire. (ii) Spring rate. (iii) The force			
	to cause the body of the spring to its yield strength.			
6.	(a)What is the function of a spring?	L1	CO4	3M
	(b) A helical spring is made from a wire of 6 mm diameter and has	L5	CO4	9M
	outside diameter of 75 mm. If the permissible shear stress is 350 MPa and			
	modulus of rigidity 84 kN/mm ² , find the axial load which the spring can			
	carry and the deflection per active turn.			
7.	A bumper consisting of two helical steel springs of circular section brings	L5	CO4	12M
	to rest, a railway wagon of mass 1500 kg and moving at 1.2 m/s. While			
	doing so, the springs are compressed by 150 mm. The mean diameter of			
	the coils is 6 times the wire diameter. The permissible shear stress is 400			
	MPa. Determine:			

	QUESTION BANK	202	1-2022	2
	(i) Maximum force on each spring.			
	(ii) Wire diameter of the spring.			
	(iii) Mean diameter of the coils and			
	(iv) Number of active coils. Take $G = 0.84 \times 105 MPa$.			
8.	Design a close coiled helical compression spring for a service load	L6	CO4	12M
	ranging from 2250 N to 2750 N. The axial deflection of the spring for the			
	load range is 6 mm. Assume a spring index of 5. The permissible shear			
	stress intensity is 420 MPa and modulus of rigidity, $G = 84 \text{ kN/mm}^2$.			
9.	(a)Classify springs according to their shapes. Draw neat sketches	L4	CO4	4M
	indicating in each case whether stresses are induced by bending or by			
	torsion.			
	(b)Design a spring for a balance to measure 0 to 1000 N over a scale of	L6	CO4	8M
	length 80 mm. The spring is to be enclosed in a casing of 25 mm			
	diameter. The approximate number of turns is 30. The modulus of rigidity			
	is 85 kN/mm ² . Also calculate the maximum shear stress induced.			
10.	Design and draw a valve spring of a petrol engine for the following	L6	CO4	12M
	operating			
	conditions :			
	Spring load when the value is $open = 400 \text{ N}$			
	Spring load when the value is $closed = 250 \text{ N}$			
	Maximum inside diameter of spring $= 25 \text{ mm}$			
	Length of the spring when the valve is open= 40 mm			
	Length of the spring when the valve is closed= 50 mm			
	Maximum permissible shear stress $= 400 \text{ MPa}$			

<u>UNIT V</u> DESIGN OF GEARS

1.	A compressor running at 300 rpm is driven by 15kW, 1200rpm motor	L5	CO5	12M
	through 20° full depth involute gears. The centre distance is 375mm.			
	choose the suitable materials for the pinion and gear, design the drive.			
2.	In a spur gear drive for a rock crusher, the gears are made of case	L6	CO5	12M
	hardened alloy steel. The pinion is transmitting 18 kW at 1200 rpm with a			
	gear ratio of 3.5. The gear is to work 8 hours/day for 3 years. Design the			
	drive.			

	QUESTION BANK	202	1-2022	2
3.	A pair of straight spur gears is required to reduce the speed of shaft from 500 to 100 rpm while continuously running 12hr per day. The pinion is of 40C8 steel and has 20 teeth. The wheel is of cast iron of grade FG200 and has 100 teeth. The gears are of 8mm module, 100 mm face width and 20° pressure angle. Calculate power rating.	L5	CO5	12M
4.	A pair of gears connecting parallel shafts is to transmit 415 N-m torsional moment at 2800 rpm of the pinion. The teeth are to be 20° stub of heat treated alloy steel. The width of face is 38mm. The driver gear rotates at 1800 rpm. Select necessary module and check for wear.	L5	CO5	12M
5.	A pair of gears is to be designed to transmit 30kW for a pinion speed of 1000 rpm and a speed ratio of 5. Design the gear train.	L6	CO5	12M
6.	A helical gear set used in a paper pulping machine connects the driving motor to the blade shaft. A power of 20kW is transmitted by the motor at 1600rpm while the blade shaft runs at 400rpm. Due to space restrictions the center distance between the gears is kept at 500mm. choosing suitable materials for the gears design the 20° full depth involute helical gears with a helix angle of 25° .	L5	CO6	12M
7.	A pair of helical gears are to transmit a power of 15 kW. The teeth are 20° stub in diametral plane and have helix angle of 45° . The pinion runs at 10,000 rpm and has 80 mm pitch diameter. The gear has 320 mm pitch diameter. If the gears are made of cast steel having allowable static strength of 100 MPa; determine a suitable module and face width from static strength considerations and check the gears for wear assuming $\sigma_{es} = 618$ MPa.	L5	CO6	12M
8.	A compressor running at 350 rpm is driven by 5 kW, 1400 rpm motor through 20^{0} full depth spur gears. The motor pinion is to be of C30 forged steel hardened and tempered, and the driven gear is to be of cast iron grade 35. Assuming medium shock condition, design the gear drive completely. Take minimum number of teeth is 18 for the pinion. The gears are working for one shift per day in an industrial atmosphere and to work for two years before their replacement.	L6	CO6	12M
9.	A pair of helical gears in a milling machine is used to transmit 4.5 kW at 1000 rpm of the pinion and the velocity ratio is 3:1. The helix angle of the	L6	CO6	12M

	QUESTION BANK	202	1-2022	2
	gear is 15° and both gears are made of steel C45. The gears are 20° FDI and the pinion is to have minimum of 20 teeth. The gear is to work 8 hrs/day for 3 years. Design the helical gears. Take the required hardness for both gears is more than 350 BHN.			
10.	A motor shaft rotating at 1500 r.p.m. has to transmit 15 kW to a low speed shaft with a speed reduction of 3:1. The teeth are $14\frac{1}{2}^{0}$ involute with 25 teeth on the pinion. Both the pinion and gear are made of steel with a maximum safe stress of 200 MPa. A safe stress of 40 MPa may be taken for the shaft on which the gear is mounted and for the key. Design a spur gear drive to suit the above conditions. Also sketch the spur gear drive. Assume starting torque to be 25% higher than the running torque.	L6	CO6	12M

PREPARED BY: A ASHA